Land Use Planning in the MLW-landscape and its potentials for Carbon Credits.

Jef Dupain*1, Florence Bwebwe*1, Charly Facheux*1, Nicolas Grondard*2, Janet Nackoney*3, David Williams*1, Bruno Guay*2

*1 African Wildlife Foundation; *2 ONF-International; *3 University of Maryland
Objectif stratégique CARPE
Réduction de destruction de l’habitat et perte de biodiversité par meilleure gestion des ressources naturelles, visant une réduction de pauvreté.

Consortium MLW
The Maringa-Lopori-Wamba Landscape
Monitoring Forest Loss

Forest loss from the Decadal Forest Change Mapping (DFCM) program, SDSU and UMD
Projected LUC MLW 2000-2050
Idrisi's Land Change Modeler extension for ArcGIS
Planification participative d’utilisation des terres

1. Contrôle destruction de l’habitat → zonage de forêt permanente vs. forêt non-permanente;
2. Répondre aux besoins spatiales pour agriculture
3. Assurer viabilité biodiversité: création réseau AP + assurer connectivité
Development of a Land-Use Plan

Suitability for future agricultural expansion in MLW, 2015

Conservation Scenario 1

- Rural Development Zone: Proposed areas for future agricultural expansion (modeled to 2015)
- Areas of existing agriculture and human settlement
- Protected areas and reserves
Development of a Land-Use Plan

MLW Proposed Macrozones

Protected Areas/Scientific Reserve
- Lomako Faunal Reserve (6)
- Extension- Luo Scientific Reserve (12)

Rural Development Zone
- Agriculture (13)

Humid Zone
- Wetlands (1)

Community Forests
- Cadjobe CBNRMA (11)
- Corridor CBNRMA (7)
- Kokolopori (2)
- Lomako CBNRMA (8)
- Lopori Congo area (10)
- Yahuma area (5)
- Yala CBNRMA (4)

Logging Concessions
- CFT (15)
- SEDAF (17)
- SIFORCO K7 (14)
- SIFORCO K2 (9)
- SOFORMA (16)
Future Directions: SOIL

MLW Landscape:
Core wildlife habitat and connectivity areas
- Protected Area
- Connectivity Area
- Core Habitat
- Area of highest impact on biodiversity
- Cultivation and Settlement
ONFI’s input to SOIL

• Identifying REDD project methodologies best suited for the types of activities implemented through SOIL
• Develop a carbon stock monitoring protocol
• Assess the feasibility of transforming SOIL into a REDD (financial sustainability, socio-political feasibility, etc).
• Summarize this information in a project idea note (PIN)